Sunday, June 16, 2024
No menu items!
HomeData IntegrationWhat is Data Replication (and What to Look for in Data Replication...

What is Data Replication (and What to Look for in Data Replication Software)

Reliable access to data is vital for companies to thrive in this digital age. But businesses struggle with various risk factors— like hardware failures, cyberattacks, and geographical distances—that could block access to data or corrupt valuable data assets. Left without access to data, teams may struggle to carry out day-to-day tasks and deliver on important projects.

One way to safeguard your data from those risks is using data replication solutions. This technology is indispensable for teams that want to replicate and protect their data and use it as a source of competitive advantage.

To help businesses explore data replication, we’ll dive into this technology and cover its benefits, challenges, types, and methods. Lastly, we’ll explore what features you should look for in data replication software.

What is Data Replication

How Data Replication Works
Benefits of Data Replication
Data Replication Challenges

Types of Replication

What to Look for in Data Replication Software

What is Data Replication

Data replication is the process of copying data from an on-premise or cloud server and storing it on another server or site. The result is a multitude of exact data copies residing in multiple locations.

These data replicas help teams recover from system failures and cyberattacks. If data is compromised at one site, teams can pull data from other servers and resume their work.

Replication also allows users to access data stored on servers close to their offices, reducing network latency. For instance, users in Asia may experience a delay when accessing data stored in North America-based servers. But the latency will decrease if a replica of this data is kept closer to Asia.

How data replication works

Data replication involves copying data in many different ways, including between on-premises servers, servers in other locations, to multiple storage devices, or to or from cloud servers.

Data can also be replicated on demand or according to a schedule, in real time or in batches. Replication can also be triggered by any changes in the master source.

Overall, the process of data replication follows these steps:

Specify your data source and destination
Choose tables and columns to be copied from the source
Plan out the frequency of replication
Decide on a replication method you’ll use
Identify replication keys if you’re using key-based replication
Select a data replication tool or write a custom code
Monitor replication processes for quality and consistency

Benefits of data replication

Data replication makes data available on multiple sites, and in doing so, offers various benefits:

Better data availability: If a system at one site goes down because of hardware issues or other problems, users can access data stored at other locations.
Improved data backup: Data is replicated to multiple sites, allowing IT teams to easily restore deleted or corrupted data.
Faster access to data: As data is stored in various locations, users retrieve data from the closest servers and benefit from reduced latency.
Improved server operations: Data can be retrieved from multiple servers, reducing the chance that any server could be overwhelmed with user queries.
Improved analytics: Data can be continuously replicated to a data warehouse used by business intelligence teams.

Replicating data to the cloud has additional benefits. Data is kept safely off-site and won’t be damaged if a major disaster, such as a flood or fire, damages on-site infrastructure. Cloud replication is also cheaper than deploying on-site data centers. Users won’t have to pay for hardware or maintenance. Replicating data to the cloud is a safer option for smaller businesses that may not be able to afford full-time cybersecurity staff. Cloud providers are constantly improving their network and physical security. Furthermore, cloud sites provide users with on-demand scalability and flexibility. Data can be replicated to servers in different geographical locations, including in the nearby region.

Data replication challenges

Data replication technologies offer many benefits, but IT teams should also keep in mind several challenges:

Increased data storage costs: Keeping replicated data at multiple locations leads to rising storage and processing costs.
Extra work for internal teams: Setting up and maintaining a data replication system often requires assigning a dedicated internal team.
Increased network traffic: Replicating data across multiple copies requires deploying new processes and adding more traffic to the network.
Inconsistent data: Managing multiple updates in a distributed environment may cause data to sometimes be out of sync. Database administrators should ensure consistency in replication processes.

Types and methods of data replication

Depending on their needs, companies can choose among several types of data replication:

Transactional replication: Users receive a full copy of their data sets, and updates are continuously replicated as data in the source changes.
Snapshot replication: A snapshot of the database is sent to replicated sites at a specific moment.
Merge replication: Data from multiple databases is replicated into a single database.

In tactical terms, there are several methods for replicating data, including:

Full-table replication: Every piece of new, updated, and existing data is copied from the source to the destination site. This method copies all data every time and requires a lot of processing power, which puts networks under heavy stress.
Key-based incremental replication: Only data changed since the previous update will be replicated. This approach uses less processing power but can’t replicate hard-deleted data.
Log-based incremental replication: Data is replicated based on information in database log files. This is an efficient method but works only with database sources that support log-based replication.

What to look for in data replication software

Data replication software should ideally contain the following features:

A large number of connectors: A replication tool should allow you to replicate data from various sources and SaaS tools to data warehouses and other targets.
Log-based capture: An ideal replication software product should capture streams of data using log-based change data capture.
Data transformation: Data replication solutions should also allow users to clean, enrich, and transform replicated data.
Ease of use: A drag-and-drop interface is an ideal solution for users to quickly set up replication processes.

Of course, users can set up the replication process by writing code internally. But managing yet another in-house app is a major commitment of energy, staff, and money. The app also may require the team to handle error logging, refactoring code, alerting, etc. It comes as no surprise that many teams are opting for third-party data replication software.

There are also database replication solutions such as Striim. This tool extracts data from databases using change data capture technology and replicates it to a variety of targets in near real time. Striim’s replication capabilities have various use cases. This platform can, for instance, enable financial organizations to near instantaneously replicate transactions and new balances data to customer accounts. Inspyrus, a San Francisco-based fintech startup, uses Striim to replicate invoicing data from its private cloud operational databases to other cloud targets such as Snowflake. Striim can also be used to replicate obfuscated sensitive data to Google Cloud while original data is safely kept in an on-premises environment.

Have more time to analyze data

Reliable access to data is of vital importance for today’s companies. But that access can often be blocked or limited, which is why data replication solutions are increasingly important. They enable teams to replicate and protect valuable data assets. And with data secured, teams can have more time and energy to analyze data and find insights that will provide a competitive edge.

Read MoreStriim



Please enter your comment!
Please enter your name here

Most Popular

Recent Comments